Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Atmos Pollut Res ; 14(3): 101688, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2246287

ABSTRACT

During specific periods when the PM2.5 variation pattern is unusual, such as during the coronavirus disease 2019 (COVID-19) outbreak, epidemic PM2.5 regional interpolation models have been relatively little investigated, and little consideration has been given to the residuals of optimized models and changes in model interpolation accuracy for the PM2.5 concentration under the influence of epidemic phenomena. Therefore, this paper mainly introduces four interpolation methods (kriging, empirical Bayesian kriging, tensor spline function and complete regular spline function), constructs geographically weighted regression (GWR) models of the PM2.5 concentration in Chinese regions for the periods from January-June 2019 and January-June 2020 by considering multiple factors, and optimizes the GWR regression residuals using these four interpolation methods, thus achieving the purpose of enhancing the model accuracy. The PM2.5 concentrations in many regions of China showed a downward trend during the same period before and after the COVID-19 outbreak. Atmospheric pollutants, meteorological factors, elevation, zenith wet delay (ZWD), normalized difference vegetation index (NDVI) and population maintained a certain relationship with the PM2.5 concentration in terms of linear spatial relationships, which could explain why the PM2.5 concentration changed to a certain extent. By evaluating the model accuracy from two perspectives, i.e., the overall interpolation effect and the validation set interpolation effect, the results showed that all four interpolation methods could improve the numerical accuracy of GWR to different degrees, among which the tensor spline function and the fully regular spline function achieved the most stable effect on the correction of GWR residuals, followed by kriging and empirical Bayesian kriging.

2.
Remote Sensing ; 14(13):3142, 2022.
Article in English | MDPI | ID: covidwho-1917706

ABSTRACT

Land subsidence is a common geological hazard. Rapid urban expansion has led to different degrees of ground subsidence within Wuhan in the past few years. The novel coronavirus outbreak in 2020 has seriously impacted urban construction and people's lives in Wuhan. Land subsidence in Wuhan has changed greatly with the resumption of work and production. We used 80 Sentinel-1A Synthetic Aperture Radar (SAR) images covering Wuhan to obtain the land subsidence change information of Wuhan from July 2017 to September 2021 by using the small baseline subset interferometric SAR technique. Results show that the subsidence in Wuhan is uneven and concentrated in a few areas, and the maximum subsidence rate reached 57 mm/yr during the study period. Compared with land deformation before 2017, the land subsidence in Wuhan is more obvious after 2020. The most severe area of subsidence is located near Qingling in Hongshan District, with a maximum accumulated subsidence of 90 mm, and obvious subsidence funnels are observed in Qiaokou, Jiangan, Wuchang and Qingshan Districts. The location of subsidence centers in Wuhan is associated with building intensity, and most of the subsidence funnels are formed in connection with urban subway construction and building construction. Carbonate belt and soft ground cover areas are more likely to lead to karst collapse and land subsidence phenomena. Seasonal changes are observed in the land subsidence in Wuhan. A large amount of rainfall can replenish groundwater resources and reduce the rate of land subsidence. The change in water level in the Yangtze River has a certain impact on the land subsidence along the rivers in Wuhan, but the overall impact is small. An obvious uplift is observed in Caidian District in the south of Wuhan, and the reason may be related to the physical and chemical expansion effects of the expansive clay.

SELECTION OF CITATIONS
SEARCH DETAIL